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S U B C R I T I C A L  F L O W S  F R O M  B E N E A T H  A S H I E L D  

V.  I. N a l i m o v  UDC 532.59 

The problem of  a two-dimensional stationary flow of an ideal incompressible heavy vortex- 
free liquid that flows from beneath a shield is studied. The bottom is considered smooth and 
horizontal, and the flow is assumed to be subcritical. The existence of a solution that is different 
from a uniform flow is proved in an exact formulation. It is shown that the solution behaves 
like a Nekrasov wave at infinity. 

We analyze the problem of a two-dimensional steady-state flow of an ideal incompressible vortex-free 
liquid that flows from beneath a plane horizontal shield. The bottom is assumed to be smooth and horizontal. 
The flow is assumed to be subcritical, i.e., the characteristic velocity of the liquid flow is lower than the 
propagation velocity of long waves of infinitely small amplitude. 

The existence of traveling waves for an infinitely deep liquid was proved independently by A. I. Nekrasov 
in 1921 and Levi-Civita in 1925. A little later, J. Struik, followed by Nekrasov, formulated similar theorems 
for a liquid of finite depth. The relevant references were given by J. Stoker in [1]. The author proved the 
existence of subcritical flows over an uneven bottom in [2]. Maklakov [3] found the problem of subscritical 
flow about a vortex to be solvable. 

If we suppose that  a free boundary and a solid wall (a shield) are in contact, the nonlinear boundary 
conditions are greatly complicated. The branching problem that arises in solving the problem of subcritical 
flow from beneath a shield has a troublesome unpleasant feature, namely, the number of solvability conditions 
is larger than the number of free parameters (the effect of infinity). Nevertheless, one manages to prove the 
solvability of this wave problem if the symmetry of the problem is used and a new parameter - -  the wave 
phare - -  is introduced. 

1. F o r m u l a t i o n  o f  t h e  P r o b l e m .  To describe liquid flows, the dimensionless velocity potential ~ and 
stream function r are chosen as independent variables [1]. This choice of independent variables allows one to 
work in a fixed domain between the two streamlines r = 0 and r = 1, rather than in a partially unknown 
flow region. 

As is known, the complex velocity potential X = ~o + i r  is an analytic function of the independent 
complex variable z = x + iy. The conjugate complex velocity @ = dx /dz  is an analytic function of z as well. 
With w = exp{- i (0  + i t ) } ,  the flow problem for a liquid is reduced [1] to searching for the analytic function 
0 + ir of X with the boundary condition 0, h - Aexp{-3r}  sin0 = 0 on the "free surface" ~b = 1, ~o > 0 with 
constant A = ghoU -2 in a unit horizontal band, where g is the acceleration of gravity, h0 is the characteristic 
depth of the flow, and U is the characteristic flow velocity. It is assumed without loss of generality that the 
point of contact of the free surface and the lid transforms into the point ~o = 0, r = 1. The requirement of 
flow subcriticality means that  A > 1. Since the angle of inclination of the flow velocity at the bottom and at 
the lid should coincide with that  of the tangent, then 0 = 0 for r = 0, ~b = 1 (~o ~< 0). 

It is assumed that the flow to be found differs little from a uniform flow: 0 = e2U, r = ~2V, ~ = 
A0 + e251, where $0 > 1, e is a small parameter, and $1 is a sought parameter. We use x and y as the 
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independent variables instead of ~o and ~b. In addition, we assume that 

fo( U, V,/~1, ~ ) = /~1U - 3 / ~ o U V  4- c2f l  (U, V,/~1, s (1.1) 

fl(U, V, Al,e) = e-6(A0 + eA1)[exp(-3r - 1 + 3~2V] sin(~2U) 

+ ~-6(Xo + ~X1)[sin(e2U) - r - 3e2V) - 3XIUV. (1.2) 

In the new notation, the initial problem is formulated as a problem of searching in the domain - o c  < 
z < oo, 0 < y < 1 for a pair of functions (U, V) from the Cauchy-Pdemann system 

Uy + V, = O, U z - V u = O  (1.3) 

with the boundary conditions at the "solid walls" 

U = O  ( y = O ) ;  g = o  ( y = l ,  x~<O) (1.4) 

and the condition at the "free boundary" 

Uu-AoU=~2fo(U,V,.~I,~) ( y = l ,  x > O ) .  (1.5) 

Since the function V, which is conjugate to U, is found with accuracy up to an arbitrary constant, an additional 
condition is required to define this function uniquely. It is assumed that 

U(x,y)  ~ 0 (x --+ -r (1.6) 

With the use of the prescribed function u(z) = U(x, 1) the functions U and V are recovered uniquely 
from the Cauchy-Riemann system (1.3) with the boundary condition U(z, 0) = 0 and the condition at infinity 
(1.6). In view of this, in what follows, the function u(z) [or the pair u(z) and v(x) = V(z ,  1)] will be called a 
solution of problem (1.3)-(1.6). 

2. F u n c t i o n a l  Spaces .  The main obstacle in the investigation of problem (1.3)-(1.6) is the train of 
nonlinear waves formed for subcritical liquid flows behind the shield. Therefore, it is natural to study this 
problem in functional spaces related to it. Let w be a positive root of the equation ~coth ~ - A0 = 0 and p0 
be the smallest positive root of the equation ~ cot ~ - A0 = 0; the number p is chosen such that 0 < p < p0. 

The set of functions that  exponentially decrease with p, are defined on the entire R axis, and have the 
finite norm 

II=IIE. = m a x  II,,(x) exp ( x)IIH.(R) r=- i -p  

o 
is denoted by E s, and E s is the subspace of functions from E s that  are equal to zero for x < 0. Like the 
properties of the spaces HS(0, L), the basic properties of the Sobolev-Shvarts spaces H~(R), which are periodic 
along the axis of functions, can be found in [4, 5]. 

o 
Let the function O(z) possess the following properties: 0' E C~(R) ,  0 = 0 for z ~ 1, and O(z) = 1 

for z />  2. The functional spaces V ~, in which problem (1.3)-(1.6) is studied, consist of functions of the form 
u = u ~ + Ou +, u ~ E H' (R) ,  and u + E H' (0 ,  L), the latter being a periodic function with period L = 2r/w. 
The norm in the space V ~ is defined by the equality I lul lv.  = Ilu~ �9 + IN+IiH.C0,L)- Clearly, V s is a complete 
linear normalized space. 

For s > 1/2, the space V ~ is a Banach algebra [6]: II~vllw -< c01MIv, llollv,. This makes it possible to 
estimate the norms of composite functions in this space. If the series ~ t~F~ = F(t) (t = h , . . . ,  tin) converges 
in a neighborhood of the coordinate origin, for a composite function at s > 1/2 we have 

m 
IIF(v)llv, -P(llvllv,),  Ilvllv* = Ilvkllv,, (2.1) 

k=l 

where 
oo 1 

# ( x )  = E y., Co max ( !IGI)x k. I~[=k k=l 
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For convergence of the series for the majorants, it is naturally assumed that the norm of the vector 
function v is small. Because the majorant of a derivative does not exceed the derivative of the majorant, at 
s > 1/2 the formula 

m 1 

r (v )  - F(w) = ~_,(v i - wi) / Ftj(~v + (1 - ~)w) d~ (2.2) 
j = l  0 

leads to the estimate 
1 

liE(v) - F(w)llv,  ~< II(v - w)llvs / g"(~llvllv, + (1 - 011wllv,) dg. (2.3) 
0 

Let the projection operators H+ and H0 act according to the rules H+u = u + and H0u = u ~ For the 
composite function 

H+F(v)  = F(v+), HoF(v) = F(v) - F(Ov +) + (1 - O)F(Ov +) + O(F(Ov +) - F(v+)) 

and for s > 1/2, the estimate 

IIHoF(v)IIE, ~< Cg~'(CIIvllvs) (2.4) 
holds. Here and below, various insignificant constants are denoted by the same symbol C. 

The representation F(v) = HoF(v) + OF(v +) is checked in a very simple way. The function 0(1 - 0) E 
O 

C~(R).  Since the product of a function from E s and a function from V s at s > 1[2 belongs to the space E s 
[6] with the corresponding estimate, the proposition (2.4) follows from formulas (2.2) and (2.3). 

For functions specified on the real axis, the shear operator T,, is defined by the equality T,,u(z) = 
u(z - u). It is clear that  T~F(v) = F(Tvv) for any composite function and 

IIT~ulIH.c0,L) = IIuIIH'(0,L), IIOT,,"IO~'II~(o,L) ~< ~II=II~+~(0,L) (2.5) 

for any periodic function. 
3. Linear Problem. The author [6] studied the linear problem (1.3)-(1.6) in the spaces V s, with a 

given function f(x) in the right-hand side of the boundary condition (1.5). The linear homogeneous problem 
(1.3)-(1.5) has a nontrivial solution (~, ~).  In accordance with the agreement in Sec. 1, the pair qo and 
[qo = ~(z,  1) and r = ~ (z ,  1)] is called an eigenfunction of problem (1.3)-(1.5). In [6], the representation 
qo = qo ~ + 0 sinw(z - x 0 )  was established and it was shown that q0 ~ E E s for any s < 1. The function tb, which 
is conjugate to qo and which meets the requirement (1.6), belongs to the space V s as well [6], and its periodic 
component is calculated by the formula 

0 0 

If the three orthogonality conditions 

L 

): f+(x)  ax = 0; 
0 

L L 
/ : + ( = ) c o s  = 0, ]:+(=)sin = 0 
0 0 

(3.1) 

(3.2) 

are satisfied, a solution of the linear problem (1.3)-(1.6) exists. The integral representation of this solution 
contains the operators K1 and K2 with the symbols 
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The caret operator sets the Fourier transform ~(~) in correspondence with the generalized function u(x),  and 
the functions Y+(~) possess the following properties for all real ~: 

C -1 ~< IY+(~)I ~< C1, Y• = Y• /~1(~)/~2(~) = rh(~), rh(~) = (~coth~ - A0) -1, 

where the overscore refers to the operation of complex conjugation. In what follows, the convolution operator 
that corresponds to rh(~) is denoted by M. 

The solution of the linear problem (1.3)-(1.5) admits  the representation u = K f + C c p  and v = Kou+C1 
with arbitrary constants C and C1. Here and below, the operator K0 is a convolution operator with the symbol 
R0(~) = i coth (, and g = K 2 g g l .  Here H ( z )  is the Heaviside function: H ( z )  = 0 for x < 0 and H ( z )  = 1 
for x >~ 1. 

The operator K0 is defined on functions from V s that  are subject  to the orthogonali ty condition (3.1). 
If s < 0, this condition is understood in the sense of generalized functions. For such functions, we have 

I I+K0f  = K o f  + - a ( f ) ,  a ( f )  = ](0);  (3.3) 

[Igof+[IH,(O,s + IIHogofl[E, <~ C[[fl[v,.  (3.4) 

The real linear functional a ( f )  is continuous on functiens subject to the orthogonality condition (3.1): 
for any r, we have 

la(f)l < Cl l f l lw.  (3.5) 

For 0 < s < 1, the operator  K acts from the subspace of functions from V s that  are subject to the orthogonality 
condition (3.2) to the space Y s+l. The  equ.~ality H + K f  = M f  + - I m { b ( f )  exp (iwx)} holds. The  complex linear 
functional b(f)  = ( 1 / 2 w ) Y - ( w ) ~ g g l ( c o )  is defined on functions f G V r, r > - 1 / 2 ,  that  are subject 
to the orthogonality condition (3.1): 

Ib(f)l <~ c ' l l f l lw.  (3.6) 

In addition, the estimate 
IlMf+ll#,+xco,z ) + IIHoKfIIE,+I Cllf l lv,  (3.7) 

holds for the indicated s. 
4. N o n l i n e a r  P r o b l e m  of  F low f r o m  b e n e a t h  a Sh ie ld .  According to the aforesaid, the function 

that  is conjugate to u and is subject to the orthogonality condition (3.1) is of the form v = Kou. Therefore, 
problem (1.3)-(1.6) has a nontrivial solution if this solution exists for the equation 

u = ,s2K{A!u + fo(u, Kou, Al,f .)} + ~. (4.1) 

Let u = zo + eAs and w(x)  = w~ + O(x)w+(z - u), where 
O0 

w+(x)  = ~_, a .  sinwx. (4.2) 
n = 2  

The solution of Eq. (1.4) is sought for in the form 

u(x) = + (1 + 0 (z) sin (x - + (4.3) 

The sought quantit ies will be the vector parameter A = (A1,Az, A3) and the vector function w(x) = 
(w+(x),  w~ For a function of the form (4.3), we have 

a(u) = -ao  - ~ho(w, X, e), (4.4) 

where ao = - ~ ( 0 )  = C 2 v ~ w - 2 y - ( o )  and 

Ao = --a(w) • Re{0t(t~)eiWU[,~ 2 -~- ~-l(-e-iwA2 -~- 1)]}. (4.5) 

In [6], the constant C2 was found from the normalization condition 9v + = sinw(x - x0). According to 
the representation (4.3) of the solution and formula (3.3), we have 

v = v ~ + O(z)[ao + ~h0 + cothw(1 + ~A2) cos w(x - u) + ~Kow+(x - v)], (4.6) 
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where v ~ = HoK0u. By the definition of the shear operator, we have 

T_~,u + = (1 + ~ 2 )  sin wx + ew+(x) .  

The shear operator commutes  with any convolution operator. Therefore, T_vv  + = a + eA0 + (1 + 
~A2) coth w cos wx + ~ K o w + ( x ) .  

According to the definition of the operator K0, we have 
OO 

K o w + ( z )  = ~ ancoth nw cos nwz. 
r t ~ 2  

Therefore, the functions f + ( w ,  ,k, e) = T - v H + h ( u ,  v, e) = h(T_~ ,u  +, T_,,v +, ~) (k = 0, 1) are odd in x. The 
function fo(u,  v , ) q ,  ~) will be subject to the orthogonality conditions (3.1) and (3.2) if 

L 

f f+(w, ,k ,e )  sin w z d x  = O. 
0 

This equality determines the  parameter  

,~1 = 3a0 + eAl(w,  ~, e) (4.7) 

with the functional 
L 

3 f[3 0 +K0w + -f+(w,X,e)] s i n w x d x .  (4.8) AI = 3A0 + ~ ~0(cothw - coth2w)a2 z(1 + e,~2) 0 

Let u and v be specified by equalities (4.3) and (4.6), respectively, and f ( w ,  ~, e) = fo(u,  v, .kl, e). By 
definition, we have T _ v f  + = f + .  In addition, let A4(w,,k,e) = b( f (w , ,X , e ) ) .  By virtue of the choice of the 
parameter A1 of (4.7) and the operator K of (3.3), Eq. (4.1) leads to the equality for lower harmonics 

(1 + eA2)sinwx = sinw(z - zo + u) - e2Im {ei~(x+V)A4}. 

This equality determines the parameters ,~2 and ,~a: 

Sk = eAk(w, )~, e) (k = 2, 3). 

Here A2 ~ s inwvlm A 4 - c o s w v R e  A4-~-2[1-cos(ewA3)],  A3 = e-lw-larcsin{eZ[sin wvRe A4 +coswv lm A4]}, 
and v = z0 + cA3. Let the projection operator H set a function subject to the orthogonality conditions (3.1) 
and (3.2) in correspondence with each odd periodic function from the space Ha(O, L). It follows from the 
aforesaid that  Eq. (4.1) is equivalent to the system 

= ,X0 + e A ( w ,  ,X, e) ,  w = e F ( w , , X ,  

where .ko = (3ao, 0, 0), A = (A1, A2, h3), F = (F1, F2), and 

(4.9) 

F l ( w , ~ , e )  = M H f + ( w ,  ,k, e), F2 = H o K f ( w ,  ,k, e). (4.10) 

In deriving system (4.9), the fact that  the shear operator commutes with any convolution operator was 
taken into consideration. 

O o 

Below, by writing w G V s (correspondingly, w G V s) we mean that  w ~ G ES(w  ~ G E s) and w + E 
Ha(0, L), i.e., the norm Ilwllv,  = liT~ , + IIw+IIHo(0,L) is finite. 

O o 

In other words, w E V  s if w = w ~ + Ow + E V s, and w E V s if w G V s. 
L e m m a .  Let 1/2 < s < 1. There exists ~o > 0 such that, for 0 < e < ~0, the operator (A0 + ~A, eF) 

transforms the sphere B = {,k E. R 3, w E Y~+ll  I,X - ,x0l 2 + Ilwll2s+l < 1} into i tself  and this operator is 
compressive. 
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Proo f .  For brevity, it is expedient to adopt the following assumption: the nonlinear operator r  A) 
belongs to the class F r if, for all (w, ,~) E B and (wl,  ,k) E B, we have 

3 

II~(w,,X)IIvT + ~ IIO~(w,X)/OAjlIv, <~ c, II~(w,.X)- ~(wa,X)llv, ~< Cllw- w, llv, 
j = l  

with constant C. By writing @(w, ,k) E F r we mean that  all the components of the operator ~ belong to the 
class F ~. Similarly, the functional A(w, ,k) E F ~ if, for the indicated w and wl ,  we have 

3 

IA(w,X)l + ~ IOA(w,A)/OAjt <<. C, IA(w,.k)- A(Wl,)~)l ~< Cllw - w ,  llv,. 
j=l  

The proof of the lemma reduces to checking the propositions Ak E F s+1 and F E F s+1 (1 ~< k ~< 3). 
The functional a( f )  is linear and inequality (3.5) is true for this functional. If one sets r = s - 1, it 

follows from the definition (4.5) of the functional A0 and also from the properties (2.5) of the shear operator 
that  A0 E F s. Therefore, an operator that  sets the pair (u, v) in correspondence with the vector (w, A) by 
formulas (4.3) and (4.6) belongs to the class F s. The functions f0(u, v, At, s) and f l (u ,  v, e) are entire analytic 
functions of their arguments.  The  composite functions fk(w,  ,~,e), which correspond to them, also belong to 
the class [,s according to (2.1), (2.3), and (2.5). 

For s > 1/2, the space V s is continuously imbedded in C. Therefore, If(x)l <<. C[[fllv, [6], and the 
integral in the right-hand side of (4.8) is defined for sufficiently small ~. In accordance with the estimates of 
composite functions (2.3) and (2.4), we have AI E F s+1. Since b(f) is a linear functional, we have A4 E F s+l 
according to the est imate (3.6) for r = s - 1 and the already established properties of the operator f ( w ,  A, e). 
Obviously, A2 and A3 belong to the class F s+1. Because f+ = T_u f  + E F s, according to the property (3.7) 
of the operator M we have F l (w ,  .k, e) E F s+1. Similarly, F2(w, ~,, e) e r '+1 according to the same estimate. 
The lemma is proved. 

O 

T h e o r e m .  For su~ciently  smM1 e, there exists a solution of  problem (1.1)-(1.6) such that u-qo ~ E V s+1 
and v - Ko~ ~ E V s+I. 

Proo f .  The  existence of a function u possessing the required properties follows from the principle of 
compressed mappings for system (4.9). Since v = Kou, the desired properties of the function v follow from 
(3.4). 

R e m a r k .  For e = 0 we have u = ~ and for s ~> 1 we have the function ~0 E Vr(r  < 1) and ~0 ~ V s. 
According to the theorem, the corrections to the solution associated with the nonlinearity are smoother than 
the fundamental  solution. 
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